Multiple format map series using QGIS 2.6 – Part 1

EN | PT

As always, the new QGIS version (QGIS 2.6 Brigthon) brings a vast new set of features that will allow the user to do more, better and faster than with the earlier version. One of this features is the ability to control some of the composer’s items properties with data (for instance, size and position). Something that will allow lots of new interesting usages. In the next posts, I propose to show how to create map series with multiple formats.

In this first post, the goal is that, keeping the page size, the map is created with the most suitable orientation (landscape or portrait) to fit the atlas feature. To exemplify, I will be using the Alaska’s sample dataset to create a map for each of Alaska’s regions.

I have started by creating the layout in one of the formats, putting the items in the desired positions.

mapa_base_atlas

To control the page orientation with the atlas feature, in the composition tab, I used the following expression in the orientation data defined properties:

CASE WHEN bounds_width( $atlasgeometry ) >=  bounds_height( $atlasgeometry ) THEN 'landscape' ELSE 'portrait' END

Using the atlas preview, I could verify that the page’s orientation changed according to the form of the atlas feature. However, the composition’s items did not follow this change and some got even outside the printing area

Screenshot from 2014-11-08 23:29:49

To control both size and position of the composition’s items I had in consideration the A4 page size (297 x 210 mm), the map margins ( 20 mm, 5 mm, 10 mm, 5 mm) and the item’s reference points.

For the map item, using the upper left corner as reference point, it was necessary to change it’s height and width. I knew that the item height was the subtraction of the top and bottom margins (30 mm) from the page height, therefore I used the following expression:

(CASE WHEN  bounds_width(  $atlasgeometry ) >=  bounds_height( $atlasgeometry) THEN 297 ELSE 210 END) - 30

Likewise, the expression to use in the width was:

(CASE WHEN  bounds_width(  $atlasgeometry ) >=  bounds_height( $atlasgeometry) THEN 210 ELSE 297 END) - 10

Screenshot from 2014-11-09 00:02:15

The rest of the items were always at a relative position of the page without the need to change their size and therefore only needed to control their position. For example, the title was centered at the page’s top, and therefore, using the top-center as reference point, all that was needed was the following expression for the X position:

Screenshot from 2014-11-09 00:13:17

(CASE WHEN  bounds_width(  $atlasgeometry ) >=  bounds_height( $atlasgeometry)  THEN 297 ELSE 210 END)  / 2.0

Screenshot from 2014-11-09 00:30:57

On the other hand, the legend needed to change the position in both X and Y. Using the bottom-right-corner as reference point, the X position expression was:

(CASE WHEN  bounds_width(  $atlasgeometry ) >=  bounds_height( $atlasgeometry) THEN 297 ELSE 210 END) - 7

And for the Y position:

(CASE WHEN  bounds_width(  $atlasgeometry ) >=  bounds_height( $atlasgeometry) THEN 210 ELSE 297 END) - 12

Screenshot from 2014-11-09 00:47:28

For the remaining items (North arrow, scalebar, and bottom left text), the expression were similar to the ones already mentioned, and, after setting them for each item, I got a layout that would adapt to both page orientation.

output_9

From that point, printing/exporting all (25) maps was one click away.

mosaico_regioes

In the next post of the series, I will try to explain how to create map series where it’s the size of the page that change to keep the scale’s value of the scale constant.

Advertisement

Map corner coordinates in QGIS

Map corner coordinates in QGIS

EN | PT

Some time ago in the qgis-pt mailing list, someone asked how to show the coordinates of a map corners using QGIS. Since this features wasn’t available (yet), I have tried to reach a automatic solution, but without success,  After some thought about it and after reading a blog post by Nathan Woodrow, it came to me that the solution could be creating a user defined function for the expression builder to be used in labels in the map.

Closely following the blog post instructions, I have created a file called userfunctions.py in the  .qgis2/python folder and, with a help from Nyall Dawson I wrote the following code.

from qgis.utils import qgsfunction, iface
from qgis.core import QGis

@qgsfunction(2,"python")
def map_x_min(values, feature, parent):
 """
 Returns the minimum x coordinate of a map from
 a specific composer.
 """
 composer_title = values[0]
 map_id = values[1]
 composers = iface.activeComposers()
 for composer_view in composers():
  composer_window = composer_view.composerWindow()
  window_title = composer_window.windowTitle()
  if window_title == composer_title:
   composition = composer_view.composition()
   map = composition.getComposerMapById(map_id)
   if map:
    extent = map.currentMapExtent()
    break
 result = extent.xMinimum()
 return result

After running the command import userfunctions in the python console  (Plugins > Python Console), it was already possible to use the  map_x_min() function (from the python category) in an expression to get the minimum X value of the map.

Screenshot from 2014-09-09 16^%29^%29

All I needed now was to create the other three functions,  map_x_max(), map_y_min() and map_y_max().  Since part of the code would be repeated, I have decided to put it in a function called map_bound(), that would use the print composer title and map id as arguments, and return the map extent (in the form of a QgsRectangle).

from qgis.utils import qgsfunction, iface
from qgis.core import QGis

def map_bounds(composer_title, map_id):
 """
 Returns a rectangle with the bounds of a map
 from a specific composer
 """
 composers = iface.activeComposers()
 for composer_view in composers:
  composer_window = composer_view.composerWindow()
  window_title = composer_window.windowTitle()
  if window_title == composer_title:
   composition = composer_view.composition()
   map = composition.getComposerMapById(map_id)
   if map:
    extent = map.currentMapExtent()
    break
 else:
  extent = None

 return extent

With this function available, I could now use it in the other functions to obtain the map X and Y minimum and maximum values, making the code more clear and easy to maintain. I also add some mechanisms to the original code to prevent errors.

@qgsfunction(2,"python")
def map_x_min(values, feature, parent):
 """
 Returns the minimum x coordinate of a map from a specific composer.
 Calculations are in the Spatial Reference System of the project.
<h2>Syntax</h2>
map_x_min(composer_title, map_id)
<h2>Arguments</h2>
composer_title - is string. The title of the composer where the map is.
 map_id - integer. The id of the map.
<h2>Example</h2>
map_x_min('my pretty map', 0) -> -12345.679

 """
 composer_title = values[0]
 map_id = values[1]
 map_extent = map_bounds(composer_title, map_id)
 if map_extent:
  result = map_extent.xMinimum()
 else:
  result = None

 return result

@qgsfunction(2,"python")
def map_x_max(values, feature, parent):
 """
 Returns the maximum x coordinate of a map from a specific composer.
 Calculations are in the Spatial Reference System of the project.
<h2>Syntax</h2>
map_x_max(composer_title, map_id)
<h2>Arguments</h2>
composer_title - is string. The title of the composer where the map is.
 map_id - integer. The id of the map.
<h2>Example</h2>
map_x_max('my pretty map', 0) -> 12345.679

 """
 composer_title = values[0]
 map_id = values[1]
 map_extent = map_bounds(composer_title, map_id)
 if map_extent:
  result = map_extent.xMaximum()
 else:
  result = None

 return result

@qgsfunction(2,"python")
def map_y_min(values, feature, parent):
 """
 Returns the minimum y coordinate of a map from a specific composer.
 Calculations are in the Spatial Reference System of the project.
<h2>Syntax</h2>
map_y_min(composer_title, map_id)
<h2>Arguments</h2>
composer_title - is string. The title of the composer where the map is.
 map_id - integer. The id of the map.
<h2>Example</h2>
map_y_min('my pretty map', 0) -> -12345.679

 """
 composer_title = values[0]
 map_id = values[1]
 map_extent = map_bounds(composer_title, map_id)
 if map_extent:
  result = map_extent.yMinimum()
 else:
  result = None

 return result

@qgsfunction(2,"python")
def map_y_max(values, feature, parent):
 """
 Returns the maximum y coordinate of a map from a specific composer.
 Calculations are in the Spatial Reference System of the project.
<h2>Syntax</h2>
map_y_max(composer_title, map_id)
<h2>Arguments</h2>
composer_title - is string. The title of the composer where the map is.
 map_id - integer. The id of the map.
<h2>Example</h2>
map_y_max('my pretty map', 0) -> 12345.679

 """
 composer_title = values[0]
 map_id = values[1]
 map_extent = map_bounds(composer_title, map_id)
 if map_extent:
  result = map_extent.yMaximum()
 else:
  result = None

 return result

The functions became available to the expression builder in the “Python” category (could have been any other name) and the functions descriptions are formatted as help texts to provide the user all the information needed to use them.

Screenshot from 2014-09-09 15^%39^%19

Using the created functions, it was now easy to put the corner coordinates in labels near the map corners. Any change to the map extents is reflected in the label, therefore quite useful to use with the atlas mode.

Screenshot from 2014-09-09 15^%40^%27

The functions result can be used with other functions. In the following image, there is an expression to show the coordinates in a more compact way.

Screenshot from 2014-09-09 15^%43^%55

There was a setback… For the functions to become available, it was necessary to manually import them in each QGIS session. Not very practical. Again with Nathan’s help, I found out that it’s possible to import python modules at QGIS startup by putting a startup.py file with the import statements in the .qgis2/python folder. In my case, this was enough.

import userfunctions

I was pretty satisfied with the end result. The ability to create your own functions in expressions demonstrates once more how easy it is to customize QGIS and create your own tools. I’m already thinking in more applications for this amazing functionality.

UT 9 - Qta da Peninha - Vegetação potencial

You can download the Python files with the functions HERE. Just unzip both files to the .qgis2/python folder, and restart QGIS, and the functions should become available.

Disclaimer: I’m not an English native speaker, therefore I apologize for any errors, and I will thank any advice on how to improve the text.

Please use the “IN” operador

Please use the “IN” operador

EN | PT

It’s not the first time I see people that, to select feature by their fields values, use expressions like this:

"field" = 'value1' OR "field" = 'value2' OR "field" = 'value3' [OR ...]

A more practical and pretty way of doing this is by using the IN operator instead.

"field" IN ('value1','value2','value3'[,...])

This operator is available in almost every GIS software I know. In QGIS, it can be used even if there isn’t a small little button to click.
Captura de tela 2014-04-23 16.50.40

In fact, this is an abbreviation of what is used in SQL, where the operator is used in the WHERE statement:

SELECT *
FROM parks
WHERE "tipo" IN ('PI','CM','PJ');

Old map in QGIS

Old map in QGIS

EN | PT

Inspired in a post by Anita Graser, I’ve tried to use QGIS to create a Cascais‘s old looking map, as if it have been drawn by hand in a methodical way.

Defining the styles

I have started by defining the styles for each elements to represent.

Buildings

To fill the buildings, I have tried to use a color that reminds me the portuguese roofs, similar to the color commonly used in old maps of cities, with a slightly darker outline of the same color.

To give a bit of dimension, a shadow was created beneath, using a “simple fill” with dark colors and using a Offset X,Y. The values were chosen assuming the predominant direction of building’s facades, so that the effect could be seen all over the map area.

Capturar_4Capturar_6

Green spaces

For the green spaces, 3 symbol layers were used. One with a green “simple fill”. A second one with a thick outline (outline: simple line) in a darker green, and using the new 2.2 functionality that allows one to show outlines only in the polygons inside.

Capturar_5The last symbol layer is just a tin line of a green even darker than the other two.

Capturar_7

The Sea

For the sea, the same effect as the green spaces was used, but in blues and with the middle outline even thicker.
Capturar_8

Roads

In the road, it was used a thick line with a orange pastel color. Some street names labels were created on top of the line using a script font (in have used Pristina Bold). To improve the label readability, a small white buffer with 50% transparency was added.
Captura de tela 2014-04-11 17.55.04Capturar_9

Beach

In the beaches, besides a simple fill as background, a point patern fill was used with a very small dot.
Capturar_11Capturar_10

Map composing

Though the map is looking almost done, it’s in the print composer that the final touches are given. First, the map sheet is totally covered with an image of an old papel (the same used by Anita). A bit of transparency is added (20%), so that the effect is not too strong.

Captura de tela 2014-04-14 11.24.53

Alterwards, the actual map is added, and in the map item properties, the rendering mode is changed from “normal” (by default) to “multiply”. This way it looks like if the map was draw directly on the old paper.

Captura de tela 2014-04-14 11.30.07

After this, it’s all about adding a few more labels (the beach and places names), a north arrow and the graphic scale (always using “multiply” rendering mode), and… Voilá, we have a map!

mapa_antigo

New QGIS plugin – “Walking time”

EN | PT

I have finally “finished” my new plugin. I uses some quotation marks, since I believe that there is still space for a few improvement. This plugin arised with the need to calculate the travel time for the Cascais oficial pedestrian routes, and started as a simple python script. I have then decided to create a graphic interface and publish it as a plugin in the hope that someone else finds it useful.

icon_largeWalking time is a QGIS python plugin that uses Tobbler’s hiking function to estimate the travel time along a line depending on the slope.

The input data required are a vector layer with lines and a raster layer with elevation values ​​(1). One can adjust the base velocity (on flat terrain) according to the type of walking or walker. By default, the value used is 5 km h (2). The plugin update or create fields with estimated time in minutes in forward and in reverse direction (3). One can run the plugin for all elements of the vector layer, or only on selected routes (4).

The plugin can also been used to prepare a network (graph) to perform network analysis when the use of travel walking time as cost is intended.

Captura de tela 2014-03-24 12.12.17-01

QGIS repository: http://plugins.qgis.org/plugins/walkingtime/

Code: https://github.com/SrNetoChan/WalkingTime

Bug report: https://github.com/SrNetoChan/WalkingTime/issues

Open Source, why?

EN | PT

During my professional and personal life, I have worked with much different software, with all kinds of licenses. Most of them would be proprietary, closed and / or commercial code. So why devote my time and learning “exclusively” to Open Source?

Without going into detail about the differences between open source software and free software, there are several reasons why FOSS (Free and Open Source Software) interest me.

The first is obviously freedom. Be free to use the software in any context and for any purpose, without being limited by the costs of software acquisition and / or the rules and conditions imposed by the manufacturer (as many said free (as beer) software do). That allows me to, for example, familiarize myself with its features without having to use piracy, or, as a freelancer worker, develop my work based on my technical capacities rather than my financial ones.

Second, the community and collaborative factor. The fact that open source software is built by user and for users, where the main goal is to enhance the software functionality (and not just raise the number of sales), and wherein each enhancement introduced by an individual or company is subsequently shared for the benefit of the whole community, avoiding duplication and “reinventing the wheel”. This is done in part through a lot of volunteer work and constant sharing of knowledge, either by the programmers or users. Thus, together, we all evolve at the same time as the software itself. In addition, everyone can contribute in some way, by producing code, writing and preparing supporting documentation, translating them into other languages or just by reporting bugs.

Finally, the “costs“. The adoption of open source software in enterprises (including the public ones), allow them to focus their investments in training of the human resources and the possible (and desirable) sponsoring of new features that are essential for their workflow, usually for a small portion of the values to spend on the acquisition of commercial software (that usually “forces” the purchase of features that may never be used).

Welcome note

EN | PT

The blog “GIS Unchained” have borne devoid of any grandiose aspirations. The main objective will be to register my experiences with Open Source software while addressing challenges related to geographic information systems (GIS), spatial analysis, cartography and everything else that it might entail.

Following the same principle of openness and sharing of the open source, I hope that these records can help others who, like me, “venture” into this world.

No one should not expect a very organized structure of articles and tutorials, as I think that the posts will be composed of loose ideas and problem solving as the challenges arise.

Finally, I do not consider myself holder of all knowledge. Therefore, there may be better solutions to the problems I present. In that case, I will thank who can elucidate me. After all, I am also here to learn.